Antifibrinolytic agents can be used in treatment of bleeding complications in oncology.

Курмулов Л.А.

SUMMARY

Bleeding is often and serious complication of hematology and non-hematology malignancies. Antifibrinolytic agents are effective in reducing blood loss in patients undergoing various types of surgery. Prior small randomized studies suggest that antifibrinolytic agents may reduce bleeding and transfusion need in patients with hematology and non-hematology malignancies too.

Keywords

bleeding, oncology, hematologic malignancies, aprotinin, tranexamic acid.

N.N. Blokhin Cancer Research Center, Moscow

Antifibrinolitiki – вспомогательные препараты профилактики и лечения кровотечений в онкологии

И.А. Курмулов

РЕ Ф Е Р А Т

Кровотечение – частое и серьезное осложнение онкологических и онкогематологических заболеваний. Антифibrинолитические препараты являются важным компонентом профилактики и сопроводительного лечения кровотечений во многих областях медицины. В последнее время в рандомизированных клинических исследованиях получены положительные результаты использования антифibrинолитиков в онкологии и онкогематологии.

Ключевые слова

кровотечение, онкология, онкогематология, аprotinin, транексамовая кислота.

Кровотечение – частый спутник онкологических заболеваний вообще и онкогематологических заболеваний (и их лечения) в частности. Далеко не все кровотечения при злокачественных заболеваниях можно предотвратить или остановить хирургическими методами; при этом не всем и не всегда помогает трансфузия и терапия.

К сожалению, надежды, связанные с повышением эффективности противошоковой терапии и, как следствие, снижением частоты и тяжести кровотечений, зачастую либо не оправдываются, либо оправдываются частично. Так, за 20 лет, несмотря на значительно возросшую эффективность противошоковой терапии, кровотечения острых промиелоцитарных лейкозов, тщательность от кровотечений снизилась с 9,33 до 7,13% [1,2]. Современные антифibrинолитические препараты, применяемые в лечении солидных опухолей, даже улучшили частоту кровотечений, связанных с противоопухолевым лечением.

Потенциал стандартных тактик терапии, заложенной в трансфузии донорских тромбоцитов (при тромбоцитопении) и донорской плаэмы, по-видимому исчерпан. Нестандартные решения, такие как введение активированных факторов свертывания крови (сейчас в моде, например, НовоСевен) – не аргументированы, повышают риск тромботических осложнений и чрезвычайно дороги. Вместе с тем, и без дополнительного введения факторов свертывания риск развития тромбозов и тромбоэмболий у больных онкологическими заболеваниями, и, поэтоchnot только солидными, также высок [3].

В цитируемом выше исследовании [3] летальность при остром промиелоцитарном лейкозе, связанная с тромботическими осложнениями, превысила 5%. Назначение гепарина, возможно, снижает риск тромботических осложнений, но почти в 10 раз, повышает риск кровотечений [4].

Выходом из этой ситуации может стать дополнительное (к стандартному трансфузционному лечению) использование препаратов, избирательно влияющих на процесс фибринолиза и оказывающих минимальное влияние на другие компоненты гемо- и гемостаза. Применяемые в настоящее время антифibrинолитические препараты включают два разных группы. С одной стороны, это аprotinin (коммерческие препараты Трасилол, Гродекс, Контрикал и др.); с другой – ингибиторы фибринолиза...
лиза эпилон-аминокапроновой кислоты (АКК) и трексемамованной кислоты (ТК). Некоторые особенности этих препаратов, определяющие их эффективность и возможные осложнения, приведены ниже.

Апроптинин (Ап) — гептапептид с молекулярной массой около 6512 Д, получаемый из тканей животных (чаще всего из легких крупных рогатых скота). Молекула Ап состоит из 58 аминокислотных остатков, собранных в один цепь. Стабильность и третичная структура Ап обусловлены попарными связями между атомами серы 6 аминокислот цистеин (в положениях 5 и 55, 14 и 38, 30 и 51). Активный центр молекулы формируется лизин и аланин (положение 15 и 16 соответственно). С биохимической точки зрения Ап относится к серинам, т. е. ферментам, блокирующем действию сериновых протеиназ путем связывания с их сериновым активным центром. Ап обратимо ингибирует действие целого ряда сериновых протеиназ, большей группы ферментов с разнообразным физиологическим действием. Ап свободно фильтруется в почечных клубочках, но почти полностью реабсорбируется в канальцах и вновь поступает в кровоток, а метаболизируется, в основном, лизосомальными ферментами печени. В связи с особенностями фармакокинетики концентрации Ап в отдельных органах и тканях (а, следовательно, и выраженностью антипротеиназной активности) может значительно превышать плазменную.

Некоторые сериновые протеиназы плазмы, непосредственно связанные с системой коагуляции крови и фибринолиза, а также ингибирующие их дозы Ап представлены в таблице 1.

Таблица 1. Ингибиторное действие апроптинина на некоторые сериновые протеиназы свертывающей системы крови.

<table>
<thead>
<tr>
<th>Сериновая протеиназа</th>
<th>Содержание в плазме ИФА50 , КИ/мл</th>
</tr>
</thead>
<tbody>
<tr>
<td>Плазмин</td>
<td>50–125</td>
</tr>
<tr>
<td>Комплекс PAR-1 — тромбин</td>
<td>50–160</td>
</tr>
<tr>
<td>Эластаза нейтрофилов</td>
<td>185</td>
</tr>
<tr>
<td>Активированная протеин С</td>
<td>68–214</td>
</tr>
<tr>
<td>Калликреин плазмы</td>
<td>200–250</td>
</tr>
<tr>
<td>Тромбин</td>
<td>Более 1250</td>
</tr>
<tr>
<td>Комплекс TF–VIIa</td>
<td>1430</td>
</tr>
</tbody>
</table>

Примечание: ИФА50 — 50% ингибирующая концентрация; КИ — калибровочная ингибиторная концентрация; PAR-1 (plasmin-activated receptor-1) — активированный протеиназный рецептор (гормона) — 1 г/мл; TF–VIIa — комплекс тромбина и активированного VII фактора свертывания.

Действие Ап на систему свертывания крови обусловлено как прямым ингибированием плазмин (антитрипсинопатологическим эффектом), так и улучшением образования активированного ХII фактора свертывания в связи с ингибитированием калликреина. При введении лекарственного препарата Ап в нагрузочной дозе 1 000 000 КИ, с последующей поддерживающей инфузий 250 000 КИ/ч, равновесная концентрация Ап в плазме составляет около 140 КИ/мл и определенно ингибирует тромбин, химотрипсин и плазмин (ИФА50 < 125 КИ/мл), калликреин (ИФА50 < 250 КИ/мл) и целый ряд других ферментов, не имеющих отношения к системе гемокоагуляции. В полавлипенетн Ап (широком спектре ингибитируемых протеиназ) скрыта, по-видимому, и его ахилюзорность. В дозах, применяемых для подавления фибринализма, Ап подавляет также реакцию воспаления (ингибирует ряд провоспалительных цитокинов) и процессы репарации поврежденных тканей. Возможно, именно этим объясняются результаты некоторых контролируемых исследований последних лет, демонстрирующие увеличение числа сердечных осложнений (например, острый почечной недостаточности или острого инфаркта миокарда) и даже летальности при использовании Ап. Так, опубликованные в прошлом году результаты крупного рандомизированного клинического исследования (РКИ) по сравнению кровосбережению при лечении разными антифибринолитическими препаратами BART (The Blood Conservation Using Antifibrinolytics in a Randomized Trial) с идутельствуют о том, что Ап уменьшает кровопотерю, но, в сравнении с ТК или АКК значительно увеличивает летальность при сердечно-сосудистых огерахий. По данным этого же исследования, применение ТК привело к равногоэффектному с Ап уменьшению кровопотери; использование АКК не способствовало кровосбережению. В результате РКИ BART использование апроптинина (но не ТК и АКК) в США и Европе в настоящее время ограничено.

ТК и АКК — синтетические структурные аналоги лизина, одной из замененных аминокислот. Свойства ТК и АКК сходны. Механизм антифибринолитического действия их терапевтических концентраций заключается в образовании конкурентной (обратимой) связи с лизин-связывающим участком молекулы плазминогена или плазмин. Поскольку процесс спонтанного фибринолиза подразумевает, что плазминоген или плазмин действуют на молекулу фибрин только после того, как образуется связь между лизинсвязывающим участком молекулы плазминогена и соответствующим активным центром молекулы фибрин, блокирование этого активного центра плазминогена надежно предотвращает фибринолиз. Если АКК хорошо известна медицинской общественности нашей страны, то ТК появилась у нас недавно (но уже присутствует в Перечне лекарственных средств для оказания медицинской помощи в условиях стационара).

В 1960–1970 гг. в лабораторных исследованиях и доклинических испытаниях было показано, что в одинаковых дозах побочные эффекты ТК и АКК почти не различаются, а антифибринолитическое действие ТК в 8–10 раз сильнее. Начиная с середины 1970-х годов ТК стала применяться в клинической практике для профилактики и лечения кровотечений при состояниях избыточного фибринолиза. В терапевтических концентрациях ТК не влияет ни на агрегацию тромбоцитов, ни на время свертывания крови. В крови ТК не связан ни с какими белками, за исключением плазминогена. В первые сутки после введения терапевтической дозы до 90% препарата выводится с мочой в неизмененном виде, почечный клиренс практический равен плазмогену и составляет около 110 мл/мин. Даже после однократного введения терапевтической дозы концентрация ТК в крови, достаточная для подавления фибринолиза, сохраняется около 8 часов, а в тканях — около 17 ч. Хорошо изученные и предсказуемые профили токсичности и фармакокинетики препарата, а также большая терапевтическая широта обусловили его широкое применение во многих областях медицины.

За несколько десятилетий клинического применения антифибринолитических препаратов проведено значительное число РКИ во многих разделах медицины. До настоящего времени, судя по поискам в базе Medline, больших РКИ действию антифибринолитических препаратов для профилактики и лечения кровотечений в онкологии и онкогематологии не опубликовано. В последнее время, однако, наметилась тенденция к улучшению этой ситуации: так, например, из 24 РКИ трексемамовой кислоты, зарегистрированных на сайте Национальных институтов здоровья США, 6 проводятся у пациентов с онкологическими заболеваниями.

В ожидании публикации результатов проводимых РКИ по использованию антифибринолитических препаратов у больных с онкологическими и онкогематологические заболеваниями, приходится действовать либо по аналогии с другими областями медицины, либо на основании нескольких отно-
сительно небольших исследований, либо единичных наблюдений. Применение антифибринолитиков «по аналогии» строится на большей доказательной базе эффективности этих препаратов в уменьшении кровопотери при маточных кровотечениях у рожениц, малых хирургических вмешательствах у больных гемофилией, хирургии печени, кардиохирургических вмешательствах и многих других областях медицины. Данное о высокой эффективности ингибиторов фибринолиза для уменьшения кровопотери получено, например, при мета-анализе РКИ по опорожнительным вмешательствам [11]. А в систематическом обзоре D.A. Непп и соавт. (2007) обобщены результаты 83 РКИ в хирургии, опубликованных только в последние 10 лет и отобранных из нескольких сотен исследований по весьма строгим критериям [12]. Результаты метаанализа довольно убедительны: у оперируемых в плановом порядке пациентов Ап (61 РКИ, 7027 пациентов) и ТК (18 РКИ, 1345 пациента) снижают необходимость в трансфузии донорских эритроцитов на 30 и 34% соответственно. По совокупным данным 8 прямых сравнительных исследований Ап и ТК, препараты уменьшают кровопотерю одинаково эффективно. Результаты применения АКК, по данным авторов обзора, свидетельствуют о неэффективности препарата по уменьшению донорских трансфузий.

Недавно опубликованы небольшие, но хорошо спланированные и выполненные РКИ в онкологии [13] и онкогематологии [14]. В первом было показано, что двукратное использование ТК в дозе 6 г в сутки, позволило вдвое снизить кровопотери при трансфузионной престатэктомии, не увеличив частоту тромботических осложнений. Во втором РКИ, включающем 38 пациентов, продемонстрировано, что применение ТК приводит к значительному снижению частоты кровотечений, уменьшению потребности в трансфузиях, в т.ч. тромбозов, но не увеличивало частоту тромботических осложнений.

Заключение

Несмотря на отсутствие крупных РКИ ингибиторов фибринолиза в профилактике кровотечений и по уменьшению кровопотери у больных с онкологическими и онкогематологическими заболеваниями, имеющиеся сегодня данные позволяют считать применение препаратов-антифибринолитиков у больных с высоким риском геморрагических осложнений оправданным и целесообразным.

ЛИТЕРАТУРА